На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

12 подписчиков

10 Technologies We Stole From the Animal Kingdom

Author: Miss Cellania / Source: Neatorama

People have been lifting ideas from Mother Nature for decades. Velcro was inspired by the hooked barbs of thistle, and the first highway reflectors were made to mimic cat eyes. But today, the science of copying nature, a field known as biomimetics, is a billion-dollar industry.

Here are some of our favorite technologies that came in from the wild.

1. Sharkskin—The Latest Craze in Catheters

Hospitals are constantly worried about germs. No matter how often doctors and nurses wash their hands, they inadvertently spread bacteria and viruses from one patient to the next. In fact, as many as 100,000 Americans die each year from infections they pick up in hospitals. Sharks, however, have managed to stay squeaky clean for more than 100 million years. And now, thanks to them, infections may go the way of the dinosaur.

Unlike other large marine creatures, sharks don’t collect slime, algae, or barnacles on their bodies. That phenomenon intrigued engineer Tony Brennan, who was trying to design a better barnacle-preventative coating for Navy ships when he learned about it in 2003. Investigating the skin further, he discovered that a shark’s entire body is covered in miniature, bumpy scales, like a carpet of tiny teeth. Algae and barnacles can’t grasp hold, and for that matter, neither can troublesome bacteria such as E. coli and Staphylococcus aureus.

Brennan’s research inspired a company called Sharklet, which began exploring how to use the sharkskin concept to make a coating that repels germs.

Today, the firm produces a sharkskin-inspired plastic wrap that’s currently being tested on hospital surfaces that get touched the most (light switches, monitors, handles). So far, it seems to be successfully fending off germs. The company already has even bigger plans; Sharklet’s next project is to create a plastic wrap that covers another common source of infections—the catheter.

2. Holy Bat Cane!

It sounds like the beginning of a bad joke: A brain expert, a bat biologist, and an engineer walk into a cafeteria. But that’s exactly what happened when a casual meeting of the minds at England’s Leeds University led to the invention of the Ultracane, a walking stick for the blind that vibrates as it approaches objects.

The cane works using echolocation, the same sensory system that bats use to map out their environments. It lets off 60,000 ultrasonic pulses per second and then listens for them to bounce back. When some return faster than others, that indicates a nearby object, which causes the cane’s handle to vibrate. Using this technique, the cane not only “sees” objects on the ground, such as trash cans and fire hydrants, but also senses things above, such as low-hanging signs and tree branches. And because the cane’s output and feedback are silent, people using it can still hear everything going on around them. Although the Ultracane hasn’t experienced ultra-stellar sales, several companies in the United States and New Zealand are currently trying to figure out how to market similar gadgets using the same bat-inspired technology.

3. Playing Dead, Saving Lives

(Image credit: Flickr user WIDOMIRAMA)

When the going gets tough, the tough play dead. That’s the motto of two of nature’s most durable creatures—the resurrection plant and the water bear. Together, their amazing biochemical tricks may show scientists how to save millions of lives in the developing world.

Resurrection plants refer to a group of desert mosses that shrivel up during dry spells and appear dead for years, or even decades. But once it rains, the plants become lush and green again, as if nothing happened. The water bear has a similar trick for playing dead. The microscopic animal can essentially shut down and, during that time, endure some of the most brutal environments known to man. It can survive temperatures near absolute zero and above 300°F, go a decade without water, withstand 1,000 times more radiation than any other animal on Earth, and even stay alive in the vacuum of space. Under normal circumstances, the water bear looks like a sleeping bag with chubby legs, but when it encounters extreme conditions, the bag shrivels up. If conditions go back to normal, the little fellow only needs a little water to become itself again.

The secret to the survival of both organisms is intense hibernation. They replace all of the water in their bodies with a sugar that hardens into glass. The result is a state of suspended animation. And while the process won’t work to preserve people (replacing the water in our blood with sugar would kill us), it does work to preserve vaccines.

The World Health Organization estimates that 2 million children die each year from vaccine-preventable diseases such as diphtheria, tetanus, and whooping cough. Because vaccines hold living materials that die quickly in tropical heat, transporting them safely to those in need can be difficult. That’s why a British company has taken a page from water bears and resurrection plants. They’ve created a sugar preservative that hardens the living material inside vaccines into microscopic glass beads, allowing the vaccines to last for more than a week in sweltering climates.

4. Trains Get a Nose Job for the Birds

(Image credit: Dr. Raju Kasambe)

When the first Japanese Shinkansen Bullet Train was built in 1964, it could zip along at 120 mph. But going that fast had an annoying side effect. Whenever the train exited a tunnel, there was a loud boom, and the passengers would complain of a vague feeling that the train was squeezing together.

That’s when engineer and bird enthusiast Eiji Nakatsu stepped in. He discovered that the train was pushing air in front of it, forming a wall of wind. When this wall crashed against the air outside the tunnel, the collision created a loud sound and placed an immense amount of pressure on the train. In analyzing the problem, Nakatsu reasoned that the train needed to slice through the tunnel like an Olympic diver slicing through the water. For inspiration, he turned to a diver bird, the kingfisher. Living on branches high above lakes and…

Click here to read more

The post 10 Technologies We Stole From the Animal Kingdom appeared first on FeedBox.

Ссылка на первоисточник
наверх