На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

12 подписчиков

Mas Subramanian Set out to Make a Semiconductor and Ended Up with a New Blue Pigment

Author: Perrin Drumm / Source: 99U by Behance

A pile of blue dust on a white background

The global pigments market is expected to reach revenues of $34.2 billion by 2020. Who knew? We follow one Oregon researcher who set out to invent a new kind of semiconductor and ended up with a blue pigment, which could be far more valuable.

Materials science professor Mas Subramanian wants to set the record straight.

First off, the Oregon State researcher did invent a new blue pigment, a feat that no person, laboratory, or corporation has been able to accomplish in about 200 years. It’s a big deal, and not just because of the “Oh cool, a new pigment” factor.

Secondly, and in a passionate plea for sanity, he did not invent a new blue color. Ignore the incorrect label on his – a title he surely didn’t give it. Colors, or shades, are inherent to the light spectrum, which isn’t something one can create. But he’ll explain that more later.

And thirdly, even if he did, which he didn’t, that’s not what’s so cool about his new YInMn Blue. This pigment – remember, not color – is vastly different than other pigments on the market and has the potential to shake up the multibillion-dollar world of pigments. Yes, that’s billion, with a b. This is a huge industry because we interact with pigments every day. They are on our walls, in our clothes, on our cereal boxes, in makeups and sodas, and, well, everything. And the pigment industry continues to find new uses for its products every year.

“The global pigments market is expected to reach revenues of $34.2 billion by 2020, due largely to extraordinary growth in the Asia-Pacific region, according to a 2016 Ceresana report titled Market Study: Pigments, 3rd Edition.

To dive into the how, why, and what is going on, Subramanian wants everyone to take a step back first. Before we get carried away with a shiny new pigment that’s easy to visualize and understand, it’s important to be grounded in the science.

Blue, as he was told during his 21-year-plus career at DuPont, is one of the hardest pigments to create. In fact, blue does not exist in nature – no, really. There’s no debate about it. Well, then, what about, say, Frank Sinatra’s blue eyes? Not blue.

To claim you made a new color is like the scientific equivalent of Columbusing – “discovering” something that’s been around forever.

In the case of eye color, blue is actually the lack of a pigment. What we see is one of nature’s many tricks. The color is entirely structural. Sinatra types actually lack the eye pigment melanin, such that when a “blue”-eyed person moves their eye, the color we see changes slightly. And blueberries: Just rename them berries, ’cause that blue part is a sham.

But we do see blue. You’re not crazy. When we see blue it’s because of the inherent properties of light. When light travels, it moves in waves. The size of the wavelength determines what, if anything, we see. The difference between a blue, a green, or an undetectable infrared is just the frequency at which the light wave moves. So when Subramanian says you can’t create a new color, he’s technically correct, because the wavelength is out there already. To claim you made a new color is like the scientific equivalent of Columbusing – “discovering” something that’s been around forever. And he doesn’t want to be the pigment world’s Christopher Columbus.

The visible spectrum, from color purple to red.
Image by Julie Campbell.

So then, what’s a pigment? A pigment is what gives something else its color. It is what makes that white bucket of paint at Home Depot or Lowe’s turn into a color like RAL 2053 or whatever else, after the paint-mixing machines squirt a few inks – pigments – into it and give it a good shake.

The professor’s discovery is a new squirt. And that gives manufacturers a range of new possibilities – and possibilities mean money. “The biggest inorganic blue is ultramarine blue,” says Mark Ryan, marketing manager for Shepherd Color Company, the sole distributor of the new pigment. “Ultramarine is similar in shade to YInMn blue, but not nearly as durable, because it has acid stability issues. YInMn’s stability opens it up to a marketplace where the rival blues can’t quite compete.”

YInMn, or Mas blue, gets its name from the three core elements in addition to oxygen: yttrium, indium, and manganese. It’s only the third inorganic blue pigment ever discovered, following Prussian blue and cobalt blue – the newest having been created in 1802. (Ultramarine doesn’t quite qualify as a discovery, as it’s a…

Click here to read more

The post Mas Subramanian Set out to Make a Semiconductor and Ended Up with a New Blue Pigment appeared first on FeedBox.

Ссылка на первоисточник
наверх