На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

12 подписчиков

The Biggest, Strangest ‘Batteries’

What if you need a battery? A really big one — big enough to run a city?

It’s a question that inventors have been tackling for decades. No one wants the fridge, or the hospital, going on the blink when demand surges or the power plant needs repairs.

It turns out to be a surprisingly tricky question to answer.

Today, with the rise of green energy sources like solar and wind, the need for industrial-scale energy storage is becoming ever more vital to make sure there’s power even after the sun sets or the breeze dies down.

It’s usually (but not always) still too impractical to string together enough traditional batteries — those powered by chemical reactions, like the ones in smoke alarms and Teslas — to do the job. Instead, with remarkable ingenuity, technicians have relied on a host of physical forces and states such as temperature, friction, gravity and inertia to keep energy locked up for later release.

That’s why in Wales a power company engineered a special lake on a mountaintop. And in Germany a utility pumps underground caverns full of compressed air. Here’s how those and other systems — all in use today — work.

Back in the 1970s, a German utility wanted to build a flexible storage plant that could respond to sudden peaks in electricity demand, since its conventional plants — mainly coal — weren’t designed to dial up or down quickly.

It didn’t have the hilly terrain needed for a hydroelectric plant, which can start operating much more quickly when demand surges. But here’s what it did have: ancient, underground salt deposits.

Borrowing a technique commonly used to store natural gas and oil deep underground, it piped water into the salt beds to dissolve the salt and create two caverns roughly a half-mile below the grassy fields in Huntorf. The plant, which opened in 1978, uses electricity from the grid, when it’s cheap because demand is low, to compress and store air in the salt caves.

Then, when electricity demand surges, a motor pushes the air to the surface and into a combustion system, where it burns natural gas that spins a turbine to produce electricity. Compressing the air allows it to deliver more oxygen to the turbines, making them more efficient.

A similar plant opened in 1991 in McIntosh, Ala. Several energy companies, mainly in the United States and Europe, are exploring mining their salt deposits for storage as well.

________

Out in the desert of Tonopah, Nev., about 200 miles northwest of Las Vegas, an enormous spiral of mirrors surrounds a concrete tower roughly 55 stories tall. Topped with a 100-foot heat exchanger formed of tubes, it’s not a relic of some mystical pagan rite, but the Crescent Dunes Solar Energy Facility.

It is the world’s first utility-scale concentrating solar power plant that uses extremely hot salt to extend the use of solar energy way past sundown.

Rather than using solar panels to produce electricity, the plant has more than 10,300 billboard-size mirrors that focus the sun’s heat on the heat exchanger, melting the salt into millions of gallons of 1,050-degree liquid that is stored until electricity is needed. The salt, which can stay liquid at higher temperatures than some other fluids like water, then flows through a steam-generating…

The post The Biggest, Strangest ‘Batteries’ appeared first on FeedBox.

Ссылка на первоисточник
наверх