Author: Matthew Davis / Source: Big Think
- We think of black holes as traditionally being formed when matter is packed so densely that the gravity they exert prevents even light from escaping their event horizon.
- However, Einstein showed that energy and matter are equivalent; rather than taking the enormous amount of matter required to make a sufficiently sized black hole, we could make one using light, known as a kugelblitz.
- If we had the technology to capture it, the energy from a kugelblitz would be extraordinarily useful.
Here’s the recipe to make a black hole: start with a sizeable amount of hydrogen, enough to make a star about 25 times the mass of the sun. That hydrogen will begin burning into helium. Let the star cook for a few million years, and it’ll start to run out of hydrogen to burn. Then it will begin burning helium into carbon or oxygen, these elements will fuse to make others in a chain of different fusion reactions, and eventually it will start producing iron. Iron can’t produce energy via fusion, so the star will run out of the fuel that made it a star. Its mass will collapse inward and bounce off the iron core, producing a supernova. If you started with a big enough star, then much of its mass will be concentrated in a space so dense that light cannot escape, resulting in a perfectly cooked black hole.
While it’s the classic recipe, there are actually several ways to make black holes, but none are quite so interesting as the kugelblitz.
A black hole made from light

NASA
The clouds of elements, or nebula, left behind after a supernova. When a star explodes in a supernova, often, a black hole is left behind.
As far as we know, most black holes are made from a tremendous amount of matter being concentrated in a very tightly packed space. In theory, though, this doesn’t have to be the case. Einstein’s formula E = mc2 tells us that energy is equivalent to matter times the speed of light squared. In regard to making black holes, this has three important implications for us: mass and energy are equivalent, mass has a tremendous amount of energy locked away inside of itself, and gravity treats mass and energy the same.
Here’s where…
The post How kugelblitz black holes could power future spacecraft appeared first on FeedBox.