Author: Emily Conover / Source: Science News

Galaxies, stars, planets and life, all are formed from one essential substance: matter.
But the abundance of matter is one of the biggest unsolved mysteries of physics. The Big Bang, 13.8 billion years ago, spawned equal amounts of matter and its bizarro twin, antimatter. Matter and antimatter partners annihilate when they meet, so an even-stephen universe would have ended up full of energy — and nothing else. Somehow, the balance tipped toward matter in the early universe.
A beguiling subatomic particle called a neutrino may reveal how that happened. If neutrinos are their own antiparticles — meaning that the neutrino’s matter and antimatter versions are the same thing — the lightweight particle might point to an explanation for the universe’s glut of matter.
So scientists are hustling to find evidence of a hypothetical kind of nuclear decay that can occur only if neutrinos and antineutrinos are one and the same. Four experiments have recently published results showing no hint of the process, known as neutrinoless double beta decay (SN: 7/6/02, p. 10). But another attempt, set to begin soon, may have a fighting chance of detecting this decay, if it occurs. Meanwhile, planning is under way for a new generation of experiments that will make even more sensitive measurements.
“Right now, we’re standing on the brink of what potentially could be a really big discovery,” says Janet Conrad, a neutrino physicist at MIT not involved with the experiments.
Each matter particle has an antiparticle, a partner with the opposite electric charge. Electrons have positrons as partners; protons have antiprotons. But it’s unclear how this pattern applies to neutrinos, which have no electric charge.
Rather than having distinct matter and antimatter varieties, neutrinos might be the lone example of a theorized class of particle dubbed a Majorana fermion (SN: 8/19/17, p. 8), which are their own antiparticles. “No other particle that we know of could have this property; the neutrino is the only one,” says neutrino physicist Jason Detwiler of the University of Washington in Seattle, who is a member of the KamLAND-Zen and Majorana Demonstrator neutrinoless double beta decay experiments.
Neutrinoless double beta decay is a variation on standard beta decay, a relatively common radioactive process that occurs naturally on Earth. In beta decay, a neutron within an atom’s nucleus converts into a proton, releasing an electron and an antineutrino. The element thereby transforms into another one further along the periodic table.
The standard type of beta decay (left) occurs when a neutron in an atom’s nucleus converts into a proton and releases an electron (blue, e–) and an antineutrino (red). For certain species of atoms, two such decays can happen at once (middle). If the neutrino is its own antiparticle, those double beta decays could also occur without any emitted antineutrinos (right).

In certain isotopes of particular elements — species of atoms characterized by a given number of protons and neutrons — two beta decays can occur simultaneously, emitting two electrons and two antineutrinos. Although double beta decay is exceedingly rare, it has been detected. If the neutrino is its own antiparticle, a neutrino-free version of this decay might also occur: In a rarity atop a rarity, the antineutrino emitted in one of the two simultaneous beta decays might be reabsorbed by the other, resulting in no escaping antineutrinos.
Such a process “creates asymmetry between matter and antimatter,” says physicist Giorgio Gratta of Stanford University, who works on the EXO-200 neutrinoless double beta decay experiment. In typical beta decay, one matter particle emitted — the electron — balances out the antimatter particle — the antineutrino. But in neutrinoless double beta decay, two electrons are emitted with no corresponding antimatter particles. Early in the universe, other processes might also have behaved…
The post The quest to identify the nature of the neutrino’s alter ego is heating up appeared first on FeedBox.