Source: Big Think

- Antimicrobial-resistant pathogens are one of the largest threats to global health today.
- As we get older, our immune systems age, increasing our risk of life threatening infections. Without reliable antibiotics, life expectancy could decline for the first time in modern history.
- If antibiotics become ineffective, common infections could result in hospitalization or even death. Life-saving interventions like cancer treatments and organ transplantation would become more difficult, more often resulting in death. Routine procedures would become hard to perform.
- Without intervention, resistant pathogens could result in 10 million annual deaths by 2050.
- By taking a multi-faceted approach—inclusive of adherence to good stewardship, surveillance and responsible manufacturing practices, as well as an emphasis on prevention and treatment—companies like Pfizer are fighting to help curb the spread.
Antibiotics have revolutionized healthcare.
With the advent of modern medicine, life threatening diseases such as smallpox, pertussis (whooping cough), tetanus (lockjaw) and measles have essentially been eradicated. More importantly, complicated procedures that increase our risk of infections—including plastic surgery, joint replacement, cancer treatments, and organ transplant, among others—have become routine because any resulting infection can be treated effectively.
But modern medicine depends on antibiotics to treat and cure many kinds of infections—infections that could impact anyone from the premature baby to the elderly. Unfortunately, antimicrobial resistance (AMR) has made some infections impossible and others increasingly difficult to treat, threatening the progress we have worked so hard to achieve.
AMR causes 700,000 deaths annually across the globe, a number projected to skyrocket to 10 million by 2050 without intervention.
What is antimicrobial resistance?
Antimicrobial drugs target the microorganisms that cause infection, such as bacteria, viruses, fungi, and parasites, and either kills them or inhibits their growth.
Anytime an antibiotic is used, either appropriately or inappropriately, the 30 trillion or more bacteria that live in or on our bodies undergo selective pressure to become resistant. Any that are sensitive to the antibiotic are killed, while those that remain are resistant or immune from the effects of that antibiotic. This is called AMR. Once a bacterial pathogen has reached a state of resistance to several types of antibiotics, it is colloquially referred to as a “superbug.”
The consequences of AMR can be stated simply: Commonly used antibiotics are rendered ineffective against that pathogen. If an infection caused by resistant bacteria is treated by that antibiotic, the bacteria are unaffected, resulting in disease persistence, worsening of the infection and/or even death. Treatments for both minor and serious infections are compromised, surgeries and other routine procedures become riskier, and the treatment of diseases like pneumonia and tuberculosis becomes very complicated. For example, according to the World Health Organization, resistance in Klebsiella pneumoniae—a common intestinal bacterium that is a major cause of hospital-acquired infections, bloodstream infections, and infections in newborns and intensive-care unit patients—has spread to all regions of the world. In some countries, because of resistance, carbapenem antibiotics (often the “last resort” treatments) do not work in more than half of people treated for these types of infections. This results in prolonged hospitalization, increased medical costs and higher rates of death for infections that were easily treated only a few years ago.
“What’s more, AMR is a truly global issue—it can affect anyone,…
The post Antimicrobial resistance is a growing threat to good health and well-being appeared first on FeedBox.