На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

12 подписчиков

What the Pliocene epoch can teach us about future warming on Earth

illustration of life in the Pliocene
BLAST FROM THE PAST Three million years ago, Earth’s climate was so warm that the High Arctic supported forests (illustrated) in which camels and other animals roamed.

Imagine a world where the polar ice sheets are melting, sea level is rising and the atmosphere is stuffed with about 400 parts per million of carbon dioxide.

Sound familiar? It should. We’re living it. But the description also matches Earth a little over 3 million years ago, in the middle of the geologic epoch known as the Pliocene.

To understand how our planet might respond as global temperatures rise, scientists are looking to warm periods of the past. These include the steamy worlds of the Cretaceous Period, such as around 90 million years ago, and the boundary of the Paleocene and Eocene epochs, about 56 million years ago.

But to many researchers, the best reference for today’s warming is the more recent Pliocene, which lasted from 5.3 million to 2.6 million years ago. The mid-Pliocene was the last time atmospheric CO2 levels were similar to today’s, trapping heat and raising global temperatures to above the levels Earth is experiencing now.

New research is illuminating how the planet responded to Pliocene warmth. One set of scientists has fanned out across the Arctic, gathering geologic clues to how temperatures there may have been as much as 19 degrees Celsius higher than today. The warmth allowed trees to spread far to the north, creating Arctic forests where three-toed horses, giant camels and other animals roamed. When lightning struck, wildfires roared across the landscape, spewing soot into the air and altering the region’s climate.

Mid-Pliocene

Pre-Industrial

Today

Other researchers are pushing the frontiers of climate modeling, simulating how the oceans, atmosphere and land responded as Pliocene temperatures soared. One new study shows how the warmth may have triggered huge changes in ocean circulation, setting up an enormous overturning current in the Pacific Ocean, similar to the “conveyor belt” in today’s Atlantic that drives weather and climate. A second new paper suggests that the Greenland and Antarctic ice sheets might have responded differently to Pliocene heat, melting at different times.

All this research into the last great warm period is helping scientists think more deeply about how the future might play out. It may not be a road map to the next 100 years, but the Pliocene is a rough guide to the high sea levels, vanishing ice and altered weather patterns that might arrive hundreds to thousands of years from now.

“It’s a case study for understanding how warm climates function,” says Heather Ford, a paleoceanographer at the University of Cambridge. “It’s our closest analog for future climate change.”

Walk through history

Teasing out the history of the Pliocene is a little like digging through a family’s past. One group of enthusiasts goes through genealogical records, collecting data on who lived where, and when. Another group uses computer software and modeling to look for broad patterns that describe how the family grew and moved over time.

The data detectives begin their work in rocks and sediments dating to the Pliocene that are scattered around the world like family-tree histories in city library archives. In 1988, the U.S. Geological Survey began a project called PRISM, for Pliocene Research, Interpretation and Synoptic Mapping, which aims to gather as many geologic clues as possible about Pliocene environments.

Story continues below image

Chemical and geologic clues within deep-sea sediment cores, like this one from the Pliocene drilled from the seabed off Alaska’s southern coast, can reveal past ocean temperatures. Paleoclimatologists use the data to reconstruct which periods were warm and which were cold.

At its start, PRISM focused on a collection of deep-sea cores drilled from the floor of the North Atlantic Ocean. Different types of marine organisms thrive in water of different temperatures. By comparing the relative abundance of species of tiny organisms preserved in the deep-sea cores, PRISM scientists could roughly map how cold-loving organisms gave way to warm ones (and vice versa) at different times in the past. Early results from the project, reported in 1992 by USGS research geologist Harry Dowsett and colleagues, showed that during the Pliocene, warming was amplified at higher latitudes in the North Atlantic.

Scientists continue to add to the PRISM records. One international team drilled a sediment core from beneath a Siberian lake and found that summer air temperatures there, in the mid-Pliocene, were as high as 15° C (about 59° Fahrenheit). That’s 8 degrees warmer than today (SN: 6/15/13, p. 13). Other researchers uncovered clues, such as plant fossils from peat bogs, that suggest mean annual temperatures on Canada’s now-frozen Ellesmere Island near Greenland were as much as 18 degrees higher than today (SN: 4/6/13, p. 9).

Now, a new group of biologists, geoscientists and other experts in past landscapes have banded together in a project called PoLAR-FIT, for Pliocene Landscape and Arctic Remains — Frozen in Time. The team is focusing on the Arctic because, just as today’s Arctic is warming faster than other parts of the planet, the Pliocene Arctic warmed more than the rest of the globe. “That’s what we call polar amplification,” says Tamara Fletcher, a team member and paleoecologist at the University of Montana in Missoula. “It was even more magnified in the Pliocene than what we’re seeing today.”

PoLAR-FIT scientists travel to the Arctic to collect geologic evidence about how the region responded to rising temperatures in the Pliocene. In the thawing permafrost slopes of Ellesmere Island, for instance, Fletcher and colleagues have been mapping black layers of charcoal in sediments dating from the Pliocene. Each charcoal layer represents a fire that burned through the ancient forest. By tracking the events across Ellesmere and other nearby islands, Fletcher’s team discovered that fire was widespread across what is now the Canadian Arctic.

Story continues below image

Wildfires swept the Arctic during the warm Pliocene, leaving behind beds of dark charcoal that are visible today.

Wildfires changed vegetation across the landscape, possibly altering how the Arctic responded to rising temperatures. Soot rising from the fires would have darkened the skies, potentially leading to local or regional weather changes. “How important is that to the warming?” asks Bette Otto-Bliesner, a paleoclimatologist at the National Center for Atmospheric Research in Boulder, Colo. “That’s something we’re still trying to determine.” Fletcher, Otto-Bliesner and colleagues described the charcoal discovery, along with modeling studies of the fires’ effects, in Seattle in…

The post What the Pliocene epoch can teach us about future warming on Earth appeared first on FeedBox.

Ссылка на первоисточник
наверх