На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

12 подписчиков

Go Small, Get Big: The Hack that Revolutionized Bioscience

Few people outside the field know just how big bioscience can get. The public tends to think of fields like physics and astronomy, with their huge particle accelerators and massive telescopes, as the natural expressions of big science. But for decades, biology has been getting bigger, especially in the pharmaceutical industry.

Specialized labs built around the automation equipment that enables modern pharmaceutical research would dazzle even the most jaded CERN physicist, with fleets of robot arms moving labware around in an attempt to find the Next Big Drug.

I’ve written before on big biology and how to get more visibility for the field into STEM programs. But how exactly did biology get big? What enabled biology to grow beyond a rack of test tubes to the point where experiments with millions of test occasions are not only possible but practically required? Was it advances in robots, or better detection methodologies? Perhaps it was a breakthrough in genetic engineering?

Nope. Believe it or not, it was a small block of plastic with some holes drilled in it. This is the story of how the microtiter plate allowed bioscience experiments to be miniaturized to the point where hundreds or thousands of tests can be done at a time.

A Bad Case of the Flu

Dr. Gyula Takátsy. Source: Wikimedia Commons

Most people know about the Spanish Flu pandemic that killed millions around and after the end of WWI. But other outbreaks of influenza have occurred since the 1918 outbreak that, while not rising to the definition of pandemic, were in some ways even deadlier.

Once such outbreak was the 1951 epidemic, said to have started on the docks in Liverpool. The weekly death toll from flu in that city would exceed that of the 1918 pandemic, and aside from deaths during The Blitz in WWII, was second only to a cholera outbreak in 1849 in terms of mortality.

The epidemic raged in pockets around the world — the UK, the US, and Canada were particularly hard hit. But Hungary was also suffering from a strong flu outbreak, and getting a handle on the public health problem was difficult. Medical lab supplies were hard to come by in post-war Hungary, and accurate tests of samples from patients were tedious and slow. Something had to be done.

Enter physician-scientist Dr. Gyula Takátsy. Dr. Takátsy saw the basic problem: tests for influenza at the time required relatively large volumes of reagents, large enough to be handled with pipettes, which are glass (or now plastic) tubes that are a little like calibrated drinking straws. With both the reagents needed for the test and the pipettes to dispense them in short supply, Dr. Takátsy realized he needed to miniaturize his assays. He reasoned that…

The post Go Small, Get Big: The Hack that Revolutionized Bioscience appeared first on FeedBox.

Ссылка на первоисточник
наверх