На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

12 подписчиков

5 decades after his death, George Gamow’s contributions to science survive

Author: Tom Siegfried / Source: Science News

George Gamow
HOLDING COURT George Gamow captivates young scientists-to-be at George Washington University in 1952.

Half a century ago, if you asked any teenage science fan to name the best popular science writers, you’d get two names: Isaac Asimov and George Gamow.

Asimov was prominent not only for his nonfiction science books, but also for his science fiction.

Gamow was known not only for writing popular science, but was also a prominent scientist who had made important contributions both to physics and biology.

Fifty years ago this month, Gamow’s career ended when he died at the age of 64. His books and scientific papers survive him, leaving plenty of science and science writing worth celebrating. Nuclear physics, astrophysics, modern cosmology and molecular biology all benefited from Gamow’s fertile intellect.

Like Asimov, Gamow was born in Russia (Odessa). But while Asimov came to the United States as a child, Gamow grew up in Russia, went to college first in Odessa (studying math) and then to the university in Petrograd (soon to become Leningrad), where he became a physicist. At Leningrad he attended lectures by the mathematician Alexander Friedmann. Friedmann was the first to fully realize that Einstein’s new general theory of relativity implied a dynamic universe — one that would expand or contract — rather than the static never-changing cosmos that most experts (including Einstein) believed in at the time.

Gamow planned to pursue a career in relativity under Friedmann’s direction. But Friedmann died young, in 1925. So Gamow fell in with a group of students more interested in quantum physics than relativity.

“We spent all our time following the new [quantum] publications and trying to understand them,” Gamow wrote in his autobiography.

While a visitor at one of Europe’s top centers for quantum theory — the University of Göttingen in Germany — he solved a mystery about radioactive decay by identifying one of the quantum world’s most important phenomena: tunneling. In one form of radioactive decay, an atomic nucleus emits alpha particles that are moving too slowly to have overcome an energy “barrier” supposedly preventing their escape. (The analogy is a hill too steep for a slow-moving ball to reach the top without rolling back down.) Gamow showed that the wave mechanics version of quantum physics permitted the alpha particle to “tunnel” through the energy-barrier hill. Quantum tunneling turned out to be important for many other features of nature, such as how the sun shines, how many chemical reactions proceed and maybe even how the universe began.

His work on tunneling impressed Niels Bohr, the leading quantum physicist in the world, earning Gamow a fellowship for study at Bohr’s Institute for Theoretical Physics in Copenhagen. During time there and at Cambridge University, Gamow became one of the world’s leading experts on nuclear physics theory. He also became well-known for his humor and irreverence,…

Click here to read more

The post 5 decades after his death, George Gamow’s contributions to science survive appeared first on FeedBox.

Ссылка на первоисточник
наверх