Author: Laurel Hamers / Source: Science News

Bits of DNA that make bacteria dangerous can be co-opted to bring the microbes down instead.
Stretches of DNA called pathogenicity islands can jump between bacteria strains, introducing new toxin-producing genes that usually make a strain more harmful. Scientists have now modified pathogenicity islands by replacing the toxin-producing genes with genes that, in mice, disabled or killed Staphylococcus aureus bacteria. If the approach works for humans, it could offer an alternative to traditional antibiotics that could one day be used against deadly drug-resistant Staphylococcus strains, researchers report September 24 in Nature Biotechnology.
Pathogenicity islands are already primed for such inside jobs: The stretches of DNA naturally get bundled into small parcels that can easily enter bacteria to deliver new genes. Researchers turned those parcels into Trojan horses of sorts, replacing the toxin-producing genes with sequences of the gene-editing tool CRISPR/Cas9, which snips DNA in specific places.
In one version, the Cas9 cuts the staph DNA,…
The post Smuggling a CRISPR gene editor into staph bacteria can kill the pathogen appeared first on FeedBox.