
On January 21st, 2018 at 1:43 GMT, Rocket Lab’s Electron rocket lifted off from New Zealand’s Mahia Peninsula. Roughly eight minutes later ground control received confirmation that the vehicle entered into a good orbit, followed shortly by the successful deployment of the payload.
On only their second attempt, Rocket Lab had become the latest private company to put a payload into orbit. An impressive accomplishment, but even more so when you realize that the Electron is like no other rocket that’s ever flown before.
Not that you could tell from the outside. If anything, the external appearance of the Electron might be called boring. Perhaps even derivative, if you’re feeling less generous. It has the same fin-less blunted cylinder shape of most modern rockets, a wholly sensible (if visually unexciting) design. The vehicle’s nine first stage engines would have been noteworthy 15 years ago, but today only serve to draw comparisons with SpaceX’s wildly successful Falcon 9.
But while the Electron’s outward appearance is about as unassuming as they come, under that jet-black outer skin is some of the most revolutionary rocket technology seen since the V-2 first proved practical liquid fueled rockets were possible. As impressive as its been watching SpaceX teach a rocket to fly backwards and land on its tail, their core technology is still largely the same as what took humanity to the Moon in the 1960’s.
Vehicles that fundimentally change the established rules of spaceflight are, as you might expect, fairly rare. They often have a tendency to go up in a ball of flames; figuratively if not always literally. Now that the Electron has reached space and delivered its first payload, there’s no longer a question if the technology is viable or not. But whether anyone but Rocket Lab will embrace all the changes introduced with Electron may end up getting decided by the free market.
A Tiny Rocket for a Growing Market
The first thing to understand about Electron is that it’s incredibly small and light for an orbital rocket. To put it into perspective, the Space Shuttle could have carried two fully fueled Electron rockets in its cargo bay without breaking a sweat. Accordingly, the Electron has an extremely low cargo capacity, topping out at around 500 lb. Compared to the Falcon 9’s maximum capacity of roughly 50,000 lb, one might wonder what the point is.

The point, of course, is the cost. A launch on Falcon 9 costs the customer around $62 M, while a trip to space on Electron is less than $6 M. If you’ve got a payload light enough to hitch a ride on an Electron, the choice is obvious. As satellites get smaller and lighter, more and more payloads will be able to fit into this category. In fact, Rocket Lab hopes to be launching as many as 100 Electron rockets per year to meet the anticipated demand.
Pound-for-pound, it’s actually much cheaper to fly on Falcon 9. But a lightweight payload on Falcon 9 will be relegated to secondary cargo. The realities of this arrangement were demonstrated in 2012,…
The post Smaller and Smarter: The Electron Rocket Takes Flight appeared first on FeedBox.