На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

15 подписчиков

Meet the Woman Who Rocked Particle Physics—Three Times

Author: Joshua Roebke / Source: WIRED

Sau Lan Wu at CERN, the laboratory near Geneva that houses the Large Hadron Collider. The mural depicts the detector she and her collaborators used to discover the Higgs boson.

In 1963, Maria Goeppert Mayer won the Nobel Prize in physics for describing the layered, shell-like structures of atomic nuclei.

No woman has won since.

One of the many women who, in a different world, might have won the physics prize in the intervening 55 years is Sau Lan Wu. Wu is the Enrico Fermi Distinguished Professor of Physics at the University of Wisconsin, Madison, and an experimentalist at CERN, the laboratory near Geneva that houses the Large Hadron Collider. Wu’s name appears on more than 1,000 papers in high-energy physics, and she has contributed to a half-dozen of the most important experiments in her field over the past 50 years. She has even realized the improbable goal she set for herself as a young researcher: to make at least three major discoveries.

Wu was an integral member of one of the two groups that observed the J/psi particle, which heralded the existence of a fourth kind of quark, now called the charm. The discovery, in 1974, was known as the November Revolution, a coup that led to the establishment of the Standard Model of particle physics. Later in the 1970s, Wu did much of the math and analysis to discern the three “jets” of energy flying away from particle collisions that signaled the existence of gluons—particles that mediate the strong force holding protons and neutrons together.

This was the first observation of particles that communicate a force since scientists recognized photons of light as the carriers of electromagnetism. Wu later became one of the group leaders for the ATLAS experiment, one of the two collaborations at the Large Hadron Collider that discovered the Higgs boson in 2012, filling in the final piece of the Standard Model. She continues to search for new particles that would transcend the Standard Model and push physics forward.

Sau Lan Wu was born in occupied Hong Kong during World War II. Her mother was the sixth concubine to a wealthy businessman who abandoned them and her younger brother when Wu was a child. She grew up in abject poverty, sleeping alone in a space behind a rice shop. Her mother was illiterate, but she urged her daughter to pursue an education and become independent of volatile men.

Wu graduated from a government school in Hong Kong and applied to 50 universities in the United States. She received a scholarship to attend Vassar College and arrived with $40 to her name.

Although she originally intended to become an artist, she was inspired to study physics after reading a biography of Marie Curie. She worked on experiments during consecutive summers at Brookhaven National Laboratory on Long Island, and she attended graduate school at Harvard University. She was the only woman in her cohort and was barred from entering the male dormitories to join the study groups that met there. She has labored since then to make a space for everyone in physics, mentoring more than 60 men and women through their doctorates.

Quanta Magazine joined Sau Lan Wu on a gray couch in sunny Cleveland in early June. She had just delivered an invited lecture about the discovery of gluons at a symposium to honor the 50th birthday of the Standard Model. The interview has been condensed and edited for clarity.

You work on the largest experiments in the world, mentor dozens of students, and travel back and forth between Madison and Geneva. What is a normal day like for you?

Very tiring! In principle, I am full-time at CERN, but I do go to Madison fairly often. So I do travel a lot.

How do you manage it all?

Well, I think the key is that I am totally devoted. My husband, Tai Tsun Wu, is also a professor, in theoretical physics at Harvard. Right now, he’s working even harder than me, which is hard to imagine. He’s doing a calculation about the Higgs boson decay that is very difficult. But I encourage him to work hard, because it’s good for your mental state when you are older. That’s why I work so hard, too.

Of all the discoveries you were involved in, do you have a favorite?

Discovering the gluon was a fantastic time. I was just a second- or third-year assistant professor. And I was so happy. That’s because I was the baby, the youngest of all the key members of the collaboration.

The gluon was the first force-carrying particle discovered since the photon. The W and Z bosons, which carry the weak force, were discovered a few years later, and the researchers who found them won a Nobel Prize. Why was no prize awarded for the discovery of the gluon?

Well, you are going to have to ask the Nobel committee that. [Laughs.] I can tell you what I think, though. Only three people can win a Nobel Prize. And there were three other physicists on the experiment with me who were more senior than I was. They treated me very well. But I pushed the idea of searching for the gluon right away, and I did the calculations. I didn’t even talk to theorists. Although I married a theorist, I never really paid attention to what the theorists told me to do.

How did you wind up being the one to do those calculations?

If you want to be successful, you have to be fast. But you also have to be first. So I did the calculations to make sure that as soon as a new collider at DESY [the German Electron Synchrotron] turned on in Hamburg, we could see the gluon and recognize its signal of three jets of particles. We were not so sure in those days that the signal for the gluon would be clear-cut, because the concept of jets had only been introduced a couple of years earlier, but this…

Click here to read more

The post Meet the Woman Who Rocked Particle Physics—Three Times appeared first on FeedBox.

Ссылка на первоисточник
наверх