На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Feedbox

15 подписчиков

Science on a shoestring

Author: Roberta Kwok / Source: Science News for Students

Termite mound
Scientists in Namibia are looking for new medicines to kill harmful microbes. They hope to find bacteria in termite mounds that make natural germ-killing chemicals.

In January, Kathleen Wang moved from the United States to Africa. Wang is a biologist who studies DNA.

It carries encoded instructions that tells cells what to do. She wanted to know how genetic differences may be linked to disease in kidneys, those organs that filter wastes from the blood. Scientists hadn’t studied these links much in people outside of Europe or the United States.

Wang started working in western Africa. Her lab was at the Noguchi Memorial Institute for Medical Research in Accra, Ghana’s capital. Accra is a modern city, and the institute had advanced equipment. The other scientists were very skilled. Still, Wang ran into problems.

“The issue wasn’t lack of passion or scientific knowledge,” she says. “The issue was just getting supplies.”

Wang needed a chemical called bisacrylamide (Bis-ah-KRIL-uh-myde). This chemical is used in experiments to identify specific DNA fragments in a sample, such as a patient’s blood. In the United States, Wang could order a bottle for about $100. She’d have it in about two days, so she never worried about running out.

But in Ghana, things were different. The last time the institute had ordered bisacrylamide, a bottle cost about $1,000. And it had taken half a year to arrive.

Part of the reason was that the chemical was made in the United States.

It cost a lot to ship it to Ghana. Also, researchers had to buy most supplies through an African company instead of ordering directly from the American manufacturer. The African company charged high prices.

Wang had to figure out a solution. The institute did not have enough of the chemical for her experiments. She faced a dilemma. “It’s a challenge to get what you need,” she says. This type of roadblock “really delays progress.”

Wang has run into a hurdle that scientists around much of the world deal with daily. In rich nations, such as the United States, conducting research is much easier. But many countries don’t have as much money. These nations are called low-income and middle-income countries.

In many of them, governments don’t spend much money on scientific research. Labs often lack equipment. Or researchers may have problems getting chemicals to run experiments. These chemicals are called reagents (Ree-AY-jintz).

“If I’m in the United States, and in the night I dream about an experiment, the next day or in the next 48 hours I can get the reagents and test my idea,” says Abdoulaye Djimdé. He studies the genes in organisms called parasites. Djimdé works at the University of Science, Techniques and Technologies of Bamako in Mali, another country in western Africa. “If I have the same dream in Africa, I have to wait three months before I can get everything in place to test that same idea.”

Those aren’t the only problems. In some areas, the internet is unreliable or difficult to access. That makes it harder to communicate with other scientists around the world to get data.

Some universities can’t afford subscriptions to journals where scientists publish results. Researchers who don’t read these journals risk repeating what someone else has already done.

The countries with the least money desperately need more scientific research. They face big problems. In some areas, people have diseases that require new treatments. Or farmers can’t grow enough nutritious food. Or nations need to protect the animals and plants that roam their lands.

Luc Soete is an economist, a researcher who studies issues related to money. He works at Maastricht University in the Netherlands. It is “the ultimate paradox,” he notes. The countries that might benefit most from science and research, he says, are the countries where it’s most difficult to do science and research.

Slowly, people are finding solutions. Rich countries are giving money or sending equipment to aid science in low- and middle-income nations. Some lower-income countries are funneling more of their funds toward research. And new programs are helping scientists in these areas take charge of their projects.

A giant gap

The difference between the money for research in low- and high-income countries is huge. Recent data show this gap.

Soete’s team published a report on science around the world in 2015. These researchers studied how much money governments and companies spent on research in each country. The world’s richest countries contain 18 percent of the world’s people. But nearly 70 percent of global spending on research happens in these wealthy nations. And they have 64 percent of the world’s researchers.

In contrast, 12 percent of the world’s population lives in low-income countries. But only 0.3 percent of global research dollars are spent there. And a mere 1 percent of all researchers live in these nations.

Rasha Osman
Rasha Osman is a computer scientist in Sudan, a country in northern Africa. She has struggled to get enough money to pay for her research.

Some lower-income countries devote little money to training new scientists and engineers. To become a top researcher, you usually need to complete a difficult set of studies that result in a PhD. In rich nations, PhD students typically earn a small salary. It’s enough money for basic needs.

That’s not true, however, in some lower-income countries. Universities may not pay their PhD students. Aspiring researchers then have to work full-time and study in their spare hours. They can’t quit their jobs to focus on PhDs because they won’t have enough money to live on. As a result, a lot of students don’t complete their PhD or don’t produce high-quality research.

“You’re set up to fail from the beginning,” says Rasha Osman. She is a computer scientist at the University of Khartoum in Sudan, a country in northern Africa. “The sad part is the best students aren’t able to do PhDs because they have to feed their families.”

New uses for old equipment

Some people in lower-income countries do finish PhDs and become researchers. But then they may face another problem: obtaining enough money to buy equipment. In some nations, “it’s a lot harder for them to get those kinds of instruments,” notes Melissa Wu.

She works at an organization called Seeding Labs in Boston, Mass. Wu is the senior vice president of operations. Her team is trying to solve this problem by sending scientific equipment to low- and middle-income countries. Researchers pay much less for these instruments than they would if they had bought them directly from manufacturers.

Seeding Labs finds instruments that scientists in rich countries no longer need. U.S. researchers might have equipment that still works, for instance, but they want to buy a new model with more features. They have so much money that they can frequently upgrade instruments.

“You can think of it like buying a car,” Wu says. Some people use the same car for 20 years. But a wealthy person might buy a new vehicle every year because they always want the best car. Then they get rid of their old one.

Researchers in rich countries sell or even throw out old equipment. Sometimes a retired instrument may “just sit in a closet,” Wu says. The researchers who own it no longer do anything with it.

Wu…

Click here to read more

The post Science on a shoestring appeared first on FeedBox.

Ссылка на первоисточник
наверх